Лазерное оружие: мифы и перспективы.

В.В. Аполлонов, д-р. физ.-мат. наук, профессор

«The Wall Street Journab» недавно опубликовал статью, в которой было высказано предположение о том, что разработка противоракетного лазера авиационного базирования (ABL) может пасть жертвой сокращения бюд­жета. Российские СМИ тут же с радостью сообщили, что Пентагон отказыва­ется от разработки боевых лазеров. Однако в этой эйфории видится большое заблуждение, если не сказать жестче.

27

Сейчас на смену химическим лазерам идут твердотельные лазерные системы с полупроводниковой накачкой. Именно на них делает ставку Пентагон, поскольку они гораздо ком­пактнее, проще и дешевле в эксплуа­тации, чем химические лазеры, долго­вечнее, легко (без трансформации выходного напряжения) совместимы с ядерной и солнечной энергетикой,позволяют обеспечить дальнейшее масштабирование выходных параме­тров, а эффективность их функцио­нирования существенно выше. Ком­пания «Нортроп» уже представила работоспособный твердотельный лазер мощностью 105 кВт и намерена существенно увеличить его мощность.

 По данным из лабораторий США уже идет отработка 500кВт. лазера. Впо­следствии «гиперболоиды» предпо­лагается устанавливать на наземные («HEL ТТЛ, морские («MLD») и воз­душные платформы (программа «HELLADS»; лазер для F-35, В-1, Х-47). Другое направление продвигает ком­пания «Raytheon», сделавшая ставку на волоконные «агрегаты». 50-кило-ваттный лазер «LaWS» планируется интегрировать с зенитным артилле­рийским комплексом «Phalanx CIWS» и его сухопутной версией «Centurion C-RAM». Кроме того, недавно появи­лось сообщение об успешном про­движении в США работ по боевому лазеру на свободных электронах. В то же время не нужно забывать про комплекс «Альфа»(НБ/ОБ лазер мощ­ностью 4,5МВт), лежащий на земле и ждущий решения о запуске. Дове­дение твердотельных лазеров до мно-гомегаваттной мощности требует вре­мени и значительных средств. Однако, накопленный опыт создания стра­тегических лазерных комплексов в прежние годы и твердая уверенность в достижимости поставленной цели на новой выстраданной основе — соз­дание мощного лазерного оружия -помогают значительно ускорить темп работ в данной области новых техно­логий. Следует, однако, заметить, что тактические лазерные комплексы на меньших уровнях мощностей в США уже весьма близки к тиражированию и реальному применению. Так что эксперты Пентагона явно не думают о закрытии перспективных лазерных программ. Речь здесь идет об эффек­тивной системе дезинформации. В прошлогоднем докладе той же орга­низации «Горизонты технологий» говорится о глобальном изменении «правил игры» после распространения «оружия направленной энергии», которое превратит традиционные символы военной мощи в устаревший хлам на уровне пушечных ядер и кавалерии… А пока в США развива­ются лазерные программы, в России наблюдается «лазерная апатия». Байки на тему «лазеры — это блеф» распро­страняют некомпетентные блоггеры и околонаучные деятели, имевшие
некоторое отношение к лазерной про­грамме тридцать лет назад. В итоге вокруг боевых 27.2лазеров сформиро­вался эпический набор мифов. Рас­смотрим наиболее нелепые из них:
Миф 1. Боевые лазеры разрабаты­ваются четыре десятка лет, прогресса не видно.
Цитата из российской прессы: «В 70-х взяли 150-тонный «Боинг-707», прилепили туда лазер и успешно пожгли мелкие ракеты. В 2000-х взяли 350-тонный «Боинг-747» прилепили туда лазер потяжелее, помощнее и успешно пожгли ракеты большего раз­мера. Лет через 20 выкупят у Украины списанную «Мрию» (640 тонн) и вот она, «Звезда Смерти». Да, все это, наверное, сможет не то что «Скад», а даже какой-нибудь «Тэпходон» сжечь. Правда, только на полигоне и один раз, не более».
Под «150-тонным «Боингом-707», на который «прилепили лазер», оче­видно, имеется в виду 137-тонный КС-135 (танкер на базе «707»-го), пере­квалифицированный в 1973 г. в NKC-135ALL. В 1983-м установленный на самолете лазер сбил несколько ракет «воздух-воздух» «Сайдуиндер» на дальности до 5 км — и еще кое-что по мелочи. Что изменилось с тех пор? Согласно вышеприведенному специ­алисту — только размеры самолета.
А как обстоят дела в реальности? Даже так называемые «мегаваттные» лазеры непрерывного действия 80-х мегаватты не излучали, а больше потребляли. Лазерный комплекс «Miracle» именуемый в свое время 2,2-мегаваттным, впоследствии в боевом варианте фигурировал как «THEL» — «тактический высоко­энергетический лазер» («MIRACLE» с системой наведения-сопровождения «SEALITE»), в сверхъестественной мощи не был замечен. Что уж гово­рить о более раннем и в пять раз более слабом АЬЬ.Есть ли с тех пор прогресс? Лазер ABL имеет мощность 1,1 МВт — и это не потребляемая мощность, а мощность в луче. Таким образом, на 350-тонный Боинг действительно «прилепили» лазер «помощнее» — примерно в 50 раз… Однако следует понимать, что фактические возмож­ности лазера определяет не мощность как таковая, а уровень концентрации излучения — т.е. способность «пушки» создавать не просто мощный, но и узконаправленный луч. ALL обладал уровнем концентрации излучения 10 в 13-й степени Дж/(ср*с). На ABL он составляет порядка 10 в 18 степени Дж/(ср»с) — т.е. в 10 тыс. раз больше. Эти достижения складываются не только из прямолинейного роста мощ­ности. Последние 30 лет стали пери­одом чрезвычайно быстрого развития адаптивной оптики, позволяющей компенсировать воздействие турбу­лентности атмосферы и лазерного тракта на проходящий луч. Кроме того, лазеры одного и того же класса радикально уменьшились в размерах. Первая версия «THEL» весила 180 тонн и с трудом утрамбовывалась в шесть трейлеров. При этом лазер был фторводородным, то есть исполь­зовал крайне агрессивные химикаты. Второе поколение «тактиков» (ATL) было уже кислород — йодным (COIL) и на порядок более компактным. Наконец, новый твердотельный лазер «Nortrop» весит 1,5 т вместе с системой охлаждения. В дальнейшем его массу предполагается снизить до 750 кг. В итоге наземная версия системы состоит из единственного грузовика «НЕМТТ A3» командного пункта на «Хамви» и буксируемой «двуколки» с радаром «AN/MPQ-64». В то же время в США ведется напряженная работа по переводу непрерывного режима в импульсно-периодический, что позволит резко увеличить дальность функционального воздействия на ОВТ.

Разговоры о том, что «боевые лазеры разрабатываются уже сорок лет — значит, они безнадежны», сви­детельствуют лишь о безграмотности в технических вопросах. Прорывные технологии всегда отрабатываются несколько десятков лет до всту­пления в фазу зрелости. Так, само­леты к моменту первого полета имели почти 60 лет предыстории — первые летающие модели были построены в 1840-х, полноразмерные аэропланы пытались строить с 1868-го. Это, по сути, классическая схема развития любой технологии, использующей новые физические принципы. Сначала — долгий «инкубационный период» без очевидных практических резуль­татов, потом — «большой скачок».

Миф 2. «Лазеры невозможно использовать долго, обычно работа их кратковременна, буквально в течение нескольких секунд

Это далеко не так! В действитель­ности химические и твердотельные боевые лазеры 28обеспечивают именно непрерывное излучение мощности — в течение минут и десятков минут. Сле­дующим шагом в развитии мощных лазерных систем, несомненно, станет реализация варьируемой временной структуры излучения с целью под­нятия пиковой мощности излучения для обеспечения механизма абляции и устранения эффекта экранировки мишени плазмой.

Миф 3. «Энергетика» лазерного оружия ничтожна по сравнению с огнестрельным. «Для сравнения: мощность 76-мм дивизионной пушки Ф-22 образца 1936 года оказывается на уровне 150 МВт. В 150 раз больше (чем у ABL)!… Это еще мы не учиты­ваем энергию ВВ в самом снаряде. Там еще столько же. Вдумайтесь в этот простейший факт: маленькая древняя пушка времен второй мировой по цене металлолома в сотни раз мощнее ультрасовременного «боевого» лазера весом десятки тонн и стоимостью свыше $5 млрд. Один только выстрел из ABL стоит миллионы долларов. И этот выстрел по энергетике сравним с очередью крупнокалиберного пуле­мета».

Такое сравнение мощности, раз­виваемой в течение 0,01 сек, с мощ­ностью постоянного излучения, и с помощью этого сравнения — «дока­зательство» неполноценности более «долгоиграющего» оружия противо­речит даже курсу школьной физики. Попробуем провести сравнение корректным способом — подсчитав энергию, отправляющуюся к цели.

Дульная энергия 12,7 мм крупно­калиберного пулемета «НСВ 15»-17,5 кДж, при боевой скорострельности 80-100 выстрелов в минуту. Иными словами, даже 100 квт лазер — это «три с половиной» крупнокалиберных пулемета (6000 кДж/мин против 1750). Вернемся, однако, к пушке. Дульная энергия Ф-22 — 1,35 МДж, в то время как мощность ABL — 1,1 МВт, т.е. 1,1 МДж ежесекундно. Таким образом, в минуту лазер выбрасывает 48 «снарядов». Переведя МВт мощ­ности в тротиловый эквивалент, мы получим 240 г взрывчатки в секунду и 14,4 кг в минуту, что эквивалентно содержимому 18 осколочно-фугасных снарядов от той же пушки. Однако, фактическая «ценность» лазера выше. Дело в том, что даже при прицельной стрельбе из огнестрельного оружия основная часть «энергии» достается не врагу, а окрестному ландшафту. Виной тому — добрый десяток фак­торов (ветер, колебания влажности, давления и температуры воздуха, сила Кориолиса и т.д.), обеспечивающих пуле или снаряду неизбежное рассе­ивание. А поток фотонов летит ровно туда, куда его направили, исключая огромное количество непроизводи­тельных потерь.
Миф 4. КПД лазеров — единицы процентов.
Фактически он у боевых лазеров до 20,6%, и это не предел. В рамках про­граммы «RELI» КПД намечено поднять до 25%. Волоконные лазеры, которые приспособила к военным задачам «Raytheon», уже сейчас имеют КПД около 30%. У огнестрельного оружия — 20-40%. В то же время КПД пока меньших, но неуклонно растущих по мощности твердотельных систем с полупроводниковой накачкой уже сегодня составляет более 50% и от разработки к разработке приближа­ется к своему физическому пределу близкому к 85%.
Миф 5.. Лазерный  луч   имеет  огромную  дифракциоону ю  р асходимость

.«Здесь вступает в силу непреодо­лимый физически закон дифракции, который гласит — излучение лазера всегда расходится с углом, пропорци­ональным отношению длины волны к диаметру пучка. Если мы возьмем кон­кретно боевой инфракрасный лазер с длиной волны 2 мкм (на такой длине работают боевые лазеры «THEL» и т.п.) и диаметр пучка 1 см, то мы получим угол расхождения 0.2 мрад (это очень незначительное угловое расхождение — например, обычные лазерные указки/дальномеры расхо­дятся на 5 мрад. и больше). Однако, расхождение 0.2 мрад. на дистанции 100 метров увеличит диаметр пятна с 1 см до примерно 3 см. То есть, плот­ность воздействия упадет пропорцио­нально площади в 7 раз всего лишь на 100 метрах. А на километре плотность луча упадет уже в 300 раз».

На самом деле боевой лазер, излу­чающий пучок с исходным диаметром 1 см — это плод нездоровой фантазии, не отягощенной хотя бы минималь­ными знаниями в этой области. В дей­ствительности, при использовании фокусирующей оптики дифракци­онная расходимость равна примерно \/D, где лямбда — длина волны, a D — диаметр зеркала, он же — исходный диаметр пучка, постепенно сужаю­щегося к цели из-за фокусировки; большой стартовый диаметр пучка, а это метры, обеспечивает низкую диф­ракционную расходимость. В случае с ABL длина волны равна 1,315 мкм, а диаметр зеркала — 1,5 м, поделив одно на другое, получаем расходи­мость около 10 в минус 6-й степени радиан. Иными словами, луч лазерного «Боинга» «расплывется» на километровом расстоянии всего на… 1 мм. На расстоянии 200 км, дифрак­ционная расходимость составит 20 см. Фактическая расходимость луча ABL превышает дифракционный предел всего лишь в 1,2 раза.

Миф 6. От лазерного оружия можно легко защититься — например, алюминиевым зеркалом. Это еще один перл.

Действительно, металлы могут иметь близкие к 100% коэффици­енты отражения. Однако, во-первых, эти коэффициенты, тем не менее, не равны 100%. Так на длине волны в 1 мкм для большинства конструк­ционных металлов коэффициент отражения падает до 75%. Реальная ракета после старта, кроме того, будет иметь значительные загрязнения. Между тем, современные «гипербо­лоиды» излучают именно в «окрест­ностях» 1 мкм (ABL — 1,315 мкм). При этом 25% от сотен киловатт с лихвой хватит, даже в непрерывном режиме, чтобы разогреть и подплавить тонкий верхний слой обшивки, на чем отра­жение и закончится — поглощение лазерного излучения быстро растет вместе с ростом температуры, и резко подскакивает после начала плавления. В импульсно-периодическом режиме ситуация обостряется еще больше.

А как же с абсолютно «детским» вопросом — «если лазерный луч можно фокусировать и наводить зеркалом, то почему тем же зеркалом нельзя защититься»? В самих лазерах исполь­зуются, как правило, многослойные диэлектрические зеркала, способные отражать очень много — но в крайне узком диапазоне и только под строго определенными углами. Кроме того, они охлаждаемые — а со всей поверх­ностью цели это проделать, как пра­вило, невозможно. Иными словами, простой, эффективной и дешевой защиты от мощных лазеров не суще­ствует

Миф 7. Проблема перегрева для лазеров не решаема. «На каждый МВт мощности лазера генерируется 4 мега­ватта тепла, которые способны рас­калить самолет докрасна и спалить дотла. Система охлаждения со ско­ростью газового потока 1800 м/сек. (сопло Лаваля) оказывается неспо­собной сбросить все вырабатываемое тепло из фюзеляжа самолета».

В реальности «утилизация» коли­честв тепла в единицы мегаватт сама по себе достаточно тривиальна. Кто-нибудь видел «раскалившийся докрасна» тепловоз? Между тем, при­личный дизель мощностью 2 МВт сбрасывает в масло и систему охлаж­дения более 1 МВт. Куда менее проста задача вывода тепла из ограничен­ного объема собственно «орудия». В случае с химическим лазером ABL разогретые продукты реакции просто выдуваются из резонатора хорошо известным соплом Лаваля, а далее для охлаждения используется жидкий аммиак. Достаточно громоздкая система с проблемными криоген­ными компонентами — однако, она действительно способна «утилизи­ровать» очень внушительные коли­чества тепла. Тактические твердо­тельные лазеры, которым предстоит избавляться от 400 кВт тепла, вполне обходятся без криогенных «холодиль­ников». Так, «HELLADS» — это про­дукт «скрещивания» нормального твердотельника и лазера с жидким рабочим телом; циркуляция послед­него и выводит избыточное тепло за пределы «пушки». Примечателен и свежий продукт «General Atomic» — аккумулятор тепловой энергии, спе­циально созданный для охлаждения лазеров. Модуль весом 35 кг способен поглотить 230 кВт, в этом случае тепло расплавляет энергоемкий материал, похожий на воск. В итоге режим «HELLADS» обеспечивает перехват в течение двух минут указанной мощ­ности непрерывного излучения с последующим тридцатисекундным перерывом.

Миф 8. Мощных и компактных источников энергии для боевых лазеров не существует.

Отчасти это действительно так -100 кВт твердотельный лазер пока не представляется возможным взгромоз­дить на что-либо меньшее, чем гру­зовик из-за необходимости иметь под рукой генератор на 500 кВт и конден­саторы соответствующей мощности. Таковы реальные масштабы про­блемы, не имеющие ничего общего с фантазиями. На практике гибридный вариант грузовика «НЕМТТ — НЕМТТ A3» даже в базовой комплек­тации имеет электрогенератор на 350 кВт, способный обеспечить до 200 кВт «экспортируемой» мощности. При повышении мощности двигателя до 505 л.с. A3 может обеспечить «внеш­нему» потребителю 400 кВт. При­ятным дополнением является батарея конденсаторов на 1,5 МДж. Иными словами, там, где обитателям блогос-феры мерещатся электростанции -на самом деле маячит один грузовик, хотя и довольно высокотехноло­гичный. Вместе с тем, проблема энер­гетики в космосе может решаться и иными, более эффективными путями.29

Так, например, хорошо отрабо­таны ядерные источники питания, солнечная энергетика с ее неограни­ченными возможностями.

Миф 9. Каждый выстрел лазера стоит миллионы.

В действительности один выстрел ABL стоит $10 тыс.; отечественные «16 миллионов» — пропагандистское… преувеличение. Это примерная стои­мость незатейливой носимой ПТУР вроде «Фагота». Более серьезные 

про­тивотанковые ракеты стоят десятки тысяч долларов, «Maverick» (ракета воздух-поверхность с дальностью в 28 км) — $154 тыс., одна ракета к «Patriot» — $3,8 млн. Стоимость выстрела так­тических лазеров еще меньше, чем у ABL — даже у фторводородного ‘THEL» она составляла $2-3 тыс., при том, что фактически этот лазер использовал не водород, а достаточно дорогой дейтерий.

Миф 10. Все задачи, которые могут быть решены лазерным оружием, легче и дешевле решаются традицион­ными средствами.

Это умозаключение уже доказало свою   несостоятельность.

Пример — попытки Израиля защититься от ракетных атак ХАМАС с помощью противоракет (система «Iron Dome»). Один пуск противоракеты обходится в $30- 40 тыс. Стоимость ракеты для «Града» составляет порядка $1 тыс., стоимость «Кассамов» не превы­шает $200. Таким образом, перехват будет обходиться в 40-200 раз дороже, чем само средство нападения. Как заметил по этому поводу представи­тель ХАМАС Тарик Абу Назар, «если каждый удар наших ракетчиков будет стоить израильтянам десятки тысяч долларов, мы будем считать, что цель достигнута». В итоге отдельные газет­чики обвиняют в «распиле» не разра­ботчиков лазеров, а тех, кто закрыл соответствующую израильско-аме­риканскую программу. Ограниченно применимой — из-за малого радиуса действия и огромного расхода боеприпасов — оказалась и система «Centurion».

Разумеется, это далеко не полный список легенд о лазерах. Большин­ство из них построено по тому же принципу — либо сознательная ложь, либо старательное превращение мухи в слона. На самом деле лазеры на поле боя — реальны, а армия, которая сможет обзавестись ими, получит вну­шительное преимущество. Так, ави­ация, способная активно обороняться от зенитных ракет и ракет воздух-воздух, станет гораздо в меньшей сте­пени уязвимой для средств ПВО. При этом развитие лазерных технологий является критически важным вовсе не для американцев. Боевые лазеры -очевидный ассимметричный ответ на превосходство Запада по высокоточному оружию. «Идеология» послед­него в предельно грубой форме сво­дится к тому, что вместо высыпания десятков болванок «по площади» на голову противнику точно «укладыва­ется» единичный, хотя и гораздо более дорогой боеприпас. Однако, такая схема особенно уязвима по отно­шению к лазерным оборонительным системам, которым все равно, что «жечь» — архаический снаряд за две сотни долларов или дорогущий уль­трасовременный прибор или высо­котехнологичный агрегат военной техники. При этом количество высо­коточных целей не столь велико, а их стоимость — в десятки раз больше, чем у самого дорогостоящего лазерного «выстрела».

30
Однако, вместо попыток догнать США у нас в России ограничива­ются разработками идейно уста­ревших лазеров — неэффективных, громоздких и не позволяющих в обозримой    перспективе    достичь 
поставленных целей. Зато чрезмерно процветает анти-пропаганда. При­чины такого развития обстановки вполне очевидны:

Во-первых, весьма успешная советская лазерная программа 70-80-х была буквально «зарезана» в начале 90-х как неперспективная — и персо­нажи, сделавшие это, по понятным причинам не слишком жаждут отве­чать за свои конъюнктурные решения, и занимаются в значительной степени более прибыльным и безопасным для карьеры бизнесом.

Во-вторых, если за производством традиционных видов вооружения в нашей стране стоят вполне опреде­ленные бизнес-интересы, то лазер­ного лобби в нашей стране практи­чески не существует, т. к. иных уж нет, а те далече.

В-третьих, значительная часть рос­сийской политической элиты всегда готова закрыть глаза на усиление воз­никающей «ассимметрии» в области стратегических вооружений — просто чтобы не раздражать «партнеров» и всегда иметь гарантированный доступ к своим счетам в западных банках.

В-четвертых, продолжать бороться за интересы обороноспо­собности страны сегодня не так уж и безопасно для личной карьеры и здоровья. Нужно обладать завидным мужеством, большим научным кру­гозором, интуицией и специальными знаниями в данной области высоких технологий, а также хорошим виде­нием перспективы дальнейшего раз­вития стратегической обстановки в мире для отстаивания своей позиции в современных условиях.

Послесловие. Уже очевидно, что в мире разворачивается новый виток технологической гонки. К сожалению, не от нас это зависит, не мы это начи­наем. Наиболее развитые страны, опираясь на свое технологическое преимущество, направляют много­миллиардные средства на разработку высокотехнологичных лазерных систем следующих поколений. Их вложения в новые технологии соз­дания лазерного оружия просто не сопоставимы с тем, что делаем мы. Они в десятки раз больше. Так в раз­витие полупроводниковой лазерной накачки твердотельных лазеров США по данным японских СМИ (на 2008г.) уже вложили более 85 млрд. долларов. Именно о необходимости ускорен­ного развития высоких технологий в своем выступлении на расширенном заседании Госсовета говорил Пре­зидент России Д. А. Медведев. В этой связи важно отметить и мнение аме­риканских специалистов, заключающееся в том, что сегодня одним из наиболее эффективных средств заво­евания технологического превосход­ства в мире по-прежнему являются лазерные технологии. Россия уси­лиями Нобелевских лауреатов А. М. Прохорова, Н. Г. Басова и Секретаря ЦК КПСС Д. Ф. Устинова всегда была одним из мировых лидеров в этой области. И сегодня, именно в резуль­тате ускоренной разработки лазеров и технологий на их основе возможно:

—  обеспечение качественно нового уровня развития промышленности, науки и технологии, возрождение научно-технической мощи России на базе современных высоких техно­логий;

—  завоевание Россией лидирующей роли в ряде областей научно-техниче­ского и технологического прогресса;

—  оживление значительного числа предприятий ряда отраслей рос­сийской промышленности, хорошо известных своими разработками в прежние годы;

—  укрепление за Россией лидирую­щего положения в космической сфере деятельности и обеспечение страте­гических и геополитических приори­тетов страны в современном мире;

—       обеспечение коммерческой выгоды от реализации широкого спектра лазерных программ, срав­нимой с выгодой, получаемой сегодня от торговли природными ресурсами.

Be the first to comment on "Лазерное оружие: мифы и перспективы."

Leave a comment

Your email address will not be published.


*